- 01. The effective size (ES) of sand and its uniformity coefficient (UC) are the usual specified parameters for sand filters. In slow sand filters, as compared to rapid sand filters,
 - (a) ES is less but UC is more
 - (b) ES is more but UC is less
 - (c) Both ES and UC are more
 - (d) Both ES and UC are less
- 02. For proper slow mixing in the flocculator of a water treatment plant, the temporal mean velocity gradient G needs to be of the order of
 - (a) 5 to 20S-1
 - (b) 20 to 80s-1
 - (c) 100 to 200S⁻¹
 - (d) 250 to 350s-1
- 03.

If only ammonia was present in water, the only change in the above diagram would have been that the curve would

- (a) Be a straight line
- (b) Become parallel to Y-axis
- (c) Become parallel to X-axis after 'D'
- (d) Be passing through the origin
- 04. Match List-I (Water treatment units) with List-II (Detention time) and select the correct answer

List – I List - I A. Rapid mixing unit 1. 11 hours B. Flocculator 2. 10 seconds C. Prpeller mixing unit 3. 30 seconds D. Sedimentation tank 4, 30 minutes

Codes:

- a. A-3, B-4, C-2, D-1
- A-4, B-3, C-1, D-2
- c. A-4, B-3, C-2, D-1
- d. A-3, B-4, C-1, D-2
- 05. Air-binding in rapid sand filters is encountered when
 - (a) There is excessive negative head
 - (b) The water is subjected to prolonged aeration
 - (c) The raw water contains dissolved gases
 - (d) The filter bed comprises largely of coarse sand
- 06.

In the plot of residual chlorine versus chlorine dose applied shown in the above figure, the curve will not have any (0,0) point because (a) of experimental error

- (b) chlorine escapes into the atmosphere
- (c) chlorine requires some contact time (d) chlorine is consumed for disinfection

- 07. Consider the following statements: Some amount of chloride is allowed in drinking water because
 - 1. It helps in killing bacteria
 - 2. Small quantity of chloride adds to the taste
 - 3. It is not injurious to human health
 - 4. It is not economical to remove it completely

Which of these statements are correct?

- (a) 1, 2 and 4 (b) 1, 2 and 3
- (c) 2, 3 and 4 (d) 1, 3 and 4
- 08. The correct sequence of processes in a water treatment plant for rural water supply is
 - (a) Chlorination, aeration, sedimentation, rapid sand filter
 - (b) Coagulation, sedimentation, slow sand filter, chlorination
 - (c) Coagulation, flocculation, clarification, pressure filter
 - (d) Aeration, plain sedimentation, slow sand filter, chlorination
- 09. Assertion (A): Alum is the most commonly used coagulant in water treatment.

Reason (R): Alum is very effective in killing pathogens present in water.

- 10. A rural water supply scheme serves a population of 10,000 at the rate of 50 litres per capita per day. For the chlorine dose of 2 ppm, the required amount of bleaching powder with 20% available chlorine will
 - (a) 0.5 kg
 - (b) 5 kg
 - (c) 10 kg
 - (d) 15 kg
- 11. The raw water entering an ideal horizontal settling tank contains following two types of particles:

Control of the Contro		
Particle type	Settling velocity (m / l)	Concentration (mg /l)
V	3	200
100	1 1	300

When the surface overflow rate of the settling tank is 3m3/m2/h, the concentration of the particles in the settled water will be

- (a) 100 mg/l
- (b) 200 mg/l
- (c) 300 mg/l
- (d) 400 mg/l
- 12. Which one of the following filters will produce water of higher bacteriological quality?
 - (a) Slow sand filter
 - (b) Rapid sand filter
 - (c) Pressure filter
 - (d) Dual media filter

13. Match List-I (Units in water treatment plant) with List-II (Impurities removed) and select the correct answer:

List - I List - I

- 1. Excess CO₂ A. Aerator
- B. Rapid sand filter and H₃S
- 2. Settleable & Slow sand filter D. Sedimentation tank colloidal (after coagulation and matter
 - flocculation) 3. Suspended matter

Codes: Suspended.

- a. A-1, B-3, C-2, D-4 b. A-3, B-1, C-2, D-4 colloidal & bacteriological
- A-3, B-1, C-4, D-2
- d. A-1, B-3, C-4, D-2
- 14. Consider the following impurities:
 - 1. CO₂ and H₂S
 - 2. Finely-divided suspended matter
 - 3. Disease causing bacteira
 - 4. Excess alkalinity

The correct sequence of the removal of these impurities in a water treatment plant is

- (a) 1, 23, 4
- (b) 1, 4, 3, 2 (c) 1, 4, 2, 3
- (d) 4, 1, 3, 2
- 15. Which of the following are the common problems associated with the operation of rapid sand-filter?
 - Air-binding
 - 2. Cracking of sand beds
 - 3. Bumping of filter beds
 - 4. Mud balls

Select the correct answer using the codes given below:

- (a) 1 and 2
- (b) 2 and 3
- (c) 2. 3 and 4
- (d) 1. 2. 3 and 4
- 16. 'Air binding' may occur in
 - (a) Sewers
 - (b) Artesian well
 - (c) Aerator
 - (d) Filter
- 17. The purpose of re-carbonation after lime-soda process of water softening is the
 - (a) Removal of excess soda from water
 - (b) Removal of non-carbonate hardness
 - (c) Recovery of lime
 - (d) Conversion of precipitates to soluble form
- 18. Which of the following are removed by rapid sand filter from water?
 - 1. Dissolved solids
 - 2. Suspended solids
 - 3. Bacteria
 - 4. Helminths

Select the correct answer using the codes given below:

- (a) 1 and 3
- (b) 2 and 3
- (c) 1 and 3

www.everexam.org