- 4.126. Diurnal variation of magnetic declination is
 - (a) greater at equator than nearer the poles
 - (b) less at equator than nearer the poles
 - (c) less in summer than in winter
 - (d) same at all latitudes and during different months.
 - 4.145. Removal of parallax, may be achieved by focussing
 - (a) the objective
 - (b) the eye-piece
 - (c) the objective and the eye-piece
 - (d) none of these.
- 4.148. Under ordinary conditions, the precision of a theodolite traverse is affected by
 - (a) systematic angular errors
 - (b) accidental linear errors
 - (c) systematic linear errors
 - (d) accidental angular errors.
- 4.152. The most reliable method of plotting a theodolite traverse, is
 - (a) by consecutive co-ordinates of each station
 - (b) by independent co-ordinates of each station
 - (c) by plotting included angles and scaling off each traverse leg
 - (d) by the tangent method of plotting.
- 4.153. The orthographical projection of a traverse leg upon the reference meridian, is known as
 - (a) departure of leg
- (b) latitude to the leg
- (c) co-ordinate of the leg
- (d) bearing of the leg.

4.162. The method general undulating area, is (a) chain surveying (c) tacheometrical surve	(b) plane table surveying eying (d) compass surveying.
(c) tacheometrical surve	ying (a) compass surveying.
 (a) additive constant is (b) multiplying constant (c) both multiplying an 	s fitted with an anallatic lens s 100, multiplying constant is zero nt is 100, additive constant is zero nd additive constants are 100 nd additive constants are 50.
4 171 In tachcometrical al	bservations, vertical staff holding
is generally preferred to no	
(a) ease of reduction of o	
AMERICAN ROLL CONTROL ROLL CONTROL CON	user vacions
(b) facility of holding	1 1 11'
	reless holding on the result
(d) none of these.	
	mple circular curve is 300 m and d is 30 m. The degree of the curve
(a) 5.73°	$(b)~5.37^{\circ}$
$(c) \ 3.57^{\circ}$	(d) 3.75°.
4.187. If Δ is the angle of d R , the length of its long ch	leflection of a simple curve of radius nord, is
$(a) R \cos \frac{\Delta}{2}$	(b) $2R \cos \frac{\Delta}{2}$
$(c) R \sin \frac{\Delta}{2}$	$(d) \ 2R \sin \frac{\Delta}{2}$.
13.4. A concrete having a s	slump of 6.5 cm, is said to be
(a) dry	(b) earth moist
(c) semi-plastic(e) none of these.	(d) plastic
	ALL/A/AIVI

13.5. Concrete is unsuitable for compaction by a vibrator if it is
(a) dry (b) earth moist (c) semi-plastic (d) plastic (e) none of these.
13.6. The entrained air in concrete
(a) increases workability
(b) decreases workability
(c) decreases resistance to weathering
(d) increases strength
(e) neither affects workability nor strength.
13.11. Separation of coarse aggregates from mortar during transportation, is known (a) bleeding (b) creeping (c) segregation (d) shrinkage (e) none of these.
 13.15. Pick up the incorrect statement from the following: (a) Admixtures accelerate hydration (b) Admixtures make concrete water proof (c) Admixtures make concrete acid proof (d) Admixtures give high strength (e) None of these.
13.17. To obtain cement dry powder, lime stones and shales or their slurry, is burnt in a rotary kiln at a temperature between
(a) 1100° and 1200°C (b) 1200° and 1300°C (c) 1300° and 1400°C (d) 1400° and 1500°C (e) 1500° and 1600°C.

13.20. Pick up the correct proportions of chemical ingredients of cement

(a) Lime: Silica: Alumina: Iron oxide: 63:22:6:3

(b) Silica: Lime: Alumina: Iron oxide: 63:22:6:3

(c) Alumina: Silica: Lime: Iron oxide: 63:22:6:3

(d) Iron oxide: Alumina: Silica: Lime: 63:22:6:3.

13.24. Di-calcium silicate (C₂S)

- (a) hydrates rapidly
- (b) generates less heat of hydration
- (c) hardens rapidly
- (d) provides less ultimate strength to cement
- (e) has less resistance to sulphate attack.
- 13.29. The high strength of rapid hardening cement at early stage, is due to its
 - (a) finer grinding
 - (b) burning at high temperature
 - (c) increased lime cement
 - (d) higher content of tricalcium.
 - 13.38. The diameter of the Vicat plunger is 10 mm and its length varies from
 - (a) 20 mm to 30 mm
- (b) 30 mm to 40 mm
- (c) 40 mm to 50 mm
- (d) 50 mm to 60 mm

(e) none of these.

YouTube CHANNEL EVERREXAN

17.57. If V is speed of a moving vehicle, r is radius of the curve, g is the acceleration due to gravity, W is the width of the carriageway, the super elevation is 17.59. For a comfortable travel on Highways, the centrifugal ratio should not exceed (a) 0.10(b) 0.15(d) 0.25(c) 0.20(e) 0.30.17.68. The distance travelled by a moving vehicle during perception and brake reaction times, is known as (a) sight distance (b) stopping distance (c) lag distance (d) none of these. 17.74. The type of curves generally provided on highways, is (b) transition curve (a) critical curve 'd) all the above. (c) vertical curve 17.76. The ideal shape of a transition curve, is (a) clothoid (b) cubic spiral (c) cubic parabola (d) lamniscate (e) none of these. 16.37. Lacy's regime condition is obtained if (a) silt grade in the channel is variable (b) discharge in the channel is variable (c) silt charge in the channel is variable (d) channel flows in unlimited, incoherent alluvium of the same character as that transported material.

(a) $R^{1/2} S^{3/4}$ (c) $R^{3/4} S^{1/3}$	$(b) Q^{3/4} S^{1/3} \ (d) R^{2/3} S^{1/2}.$
(b) entire cross-section o	n regime conditions nsion by vertical components of of the channel is generated at all cormal to the wetted perimeter
16.70. An outlet which maintainespective of fluctuation in the channel or water course, is known (a) non-modular outlet (c) flexible modular outlet	water levels of the supplying own as (b) semi-modular outlet
16.71. The ratio of the rate of cand parent channel, is known (a) efficiency (c) flexibility	

YouTube CHANNEL EVERREXAN