

CIVIL ENGINEERING LIVE ONLINE

QUESTION PRACTICE PROGRAM

SSC JE PRE 2019

 $\frac{3000}{PRACTICE}$

Validity: 4 Months

<u>Rajasthan je</u>

2000 + QUESTIONS PRACTICE

www.everexam.org | For Enquiry: 8595517959

Q:) Which one of the following statements correct?

A: Maximum longitudinal in an axially loaded short column is 6% of gross sectional area

B: Columns with circular section are provided traverse reinforcement of helical type only

C: Spacing of lateral ties cannot be more than 16 times the diameter of tie bar

D: Longitudinal reinforcement bar need not be in contact with lateral ties.

YOUTUBE CHANNEL EXERES AND EXECUTION OF THE PROPERTY OF THE PR

Q:) The limits of percentage p of the longitudinal reinforcement in a

7827455078

column is

A: 0.15% to 2%

B: 0.8% to 4%

C: 0.8% to 6%

D: 0.8% to 8%

YOUTUBE CHANNEL EXERGES (A)

Q:) The load carrying capacity of column designed by working stress method is 500 kN. The collapse load of the column is

A:500.0 kN

B: 662.5 kN

C: 750.0 kN

D: 1100.0 kN

Q:) The reduction coefficient or a reinforced concrete column with an effective length of 4.8 m and size 250×300 mm is

A: 0.8

B: 0.85

C: 0.9

D: 0.95

YouTube CHANNEL EXERESKAN

Q:) The maximum spacing of vertical reinforcement in RCC wall should NOT exceed.

A: The thickness of wall

B: 1.5 times the thickness of wall

C: 2 times the thickness of wall

D: 3 times the thickness of wall

YouTube CHANNEL EXERES AND EXECUTION OF THE PROPERTY OF THE PR

Q:) Lateral ties in RC columns are provides to resist

A: Bending moment

B: Shear

C: Buckling of longitudinal steel bars

D: Both bending moment and shear

YOUTUBE CHANNEL EXERGESCAN

Q:) In an axially loaded spirally reinforced short column, the concrete inside

827455078

the core is subjected to

A: Bending and compression

B: Biaxial compression

C: Triaxial compression

D: Uniaxial compression

Q:) In a pedestrian, the factor by which the effective length should not exceed the least lateral dimensions is

A:2

B:3

C:4

D:5

Q:) Which of the following are the additional moments considered for design of slender compression member in lieu of deflection in x and y directions?

$$extstyle{ t A}: rac{P_u l_{ex}^2}{2000D} and rac{P_u l_{ey}^2}{2000D}$$

$$\mathtt{B}: rac{P_u l_{ex}}{2000} and rac{P_u l_{ey}}{2000}$$

$$\mathsf{C}:rac{P_u l_{ex}^2}{2000D} and rac{P_u l_{ey}^2}{2000b}$$

$$extstyle extstyle ext$$

YouTube CHANNEL EXERESKA M

Q:) A square column section of size 350 mm \times 350 mm is reinforced with four bars of 25 mm diameter and four bars of 16 mm diameter. Then the transverse steel should be

A:5 mm dia @ 240 mm c/c

B: 6 mm dia @ 250 mm c/c

C: 8 mm dia @ 250 mm c/c

D: 8 mm dia @ 350 mm c/c

Q:) An axially loaded column is of 300×300 mm size. Effective length of column is 3 m. What is the minimum eccentricity of the axial load for the column?

A:0

B: 10 mm

C: 16 mm

D: 20 mm

YouTube CHANNEL EXERESKAN

Q:) A rectangular reinforced column (8 \times D) has been subjected to uniaxial bending moment M and axial load P. Characteristic strength of concrete = f_{ck} ' Which one among the following column design curves shows the relation between M and P qualitatively?

YOUTUBE CHANNEL EXERES AND ELECTRON OF THE PROPERTY OF THE PRO

Q:) A RC column of square cross - section ($400 \times 400 \text{ mm}^2$) has its column load - moment interaction diagram as shown in figure below. What is the maximum uniaxial eccentricity at which a factored load Pu = 640 kN can be applied safety? (Take f_{ck} = 20 MPa)

A: 300 mm

B: 400 mm

C: 600 mm

D: 800 mm

Q:) Which one of the following represents the ratio of volume of helical reinforced to volume of core?

$$extstyle{A}: 0.36 \left(rac{A_g}{A_c} - 1
ight) rac{f_{ck}}{f_y}$$

$$extstyle{B}: 0.36 \left(rac{A_g}{A_s}-1
ight)rac{f_{ck}}{f_y}$$

$$\mathsf{C}$$
 : $0.36\left(rac{A_s}{A_c}-1
ight)rac{f_{ck}}{f_y}$

$$extsf{D}: 0.36 \left(rac{A_c}{A_s} - 1
ight) rac{f_{ck}}{f_y}$$

where Ag, As and Ac are gross cross sectional area of the membrane area of steel and core area; and F_{ck} and f_y are characteristic strength of concrete and steel respectively

YOUTUBE CHANNEL EVERESKANIEL

Q:) A wall carries an axial load, 12 kN/m and also an eccentric load of 27 kN/m at 72 mm from the central axis of the wall. The equivalent eccentricity is nearly

A: 65 mm

B: 60 mm

C: 55 mm

D:50 mm

YouTube CHANNEL EXERESKAN

Q:) Given that Φ is angle of internal friction 'p' is the safe bearing capacity and 'y' is the unit weight of soil, the maximum depth of foundation of masonry footings is given by

$$oldsymbol{\mathsf{A}}$$
 : $rac{p}{y} \left(rac{1 + sin\Phi}{1 - sin\Phi}
ight)$

$$\mathtt{B}:rac{p}{y}\left(rac{1-sin\Phi}{1+sin\Phi}
ight)$$

$$\mathsf{C}:rac{p}{y}igg(rac{1+sin\Phi}{1-sin\Phi}igg)^2$$

$${f D}$$
 : $rac{p}{y} igg(rac{1-sin\Phi}{1+sin\Phi} igg)^2$

YouTube CHANNEL EXERESKA M

Q:) The critical section for two-away shear of footing is at the

7827455078

A: Face of the column

B: Distance d from the column face

C: Distance d/2 from the column face

D: Distance 2d from the column face

Where d is effective depth of the footing

Q:) In the case of isolated square concrete footing, match the locations at which the stress resultants are to be checked, where d is effective depth of footing and select correct answer using the code given below the lists:

Stress Resultant	Location
A. Bending Moment	1. At face of column
B. One Way shear	2. At d/2 from face of column
C. Punching Shear	3. At d face of column

Codes:

A: A-1, B-2, C-3

B: A-3, B-1, C-2

C: A-2, B-1, C-3

D: A-1, B-3, C-2