- 01. If the water table rises upto ground surface then the
- a. Effective stress is reduced due to decrease in total stress only but pore water pressure does not change
- b. Effective stress is reduced due to increase in pore water pressure only but total stress does not change
- c. Total stress is reduced due to increase in pore water pressure only but effective stress does not change
- d. Total stress is increased due to decrease in pore water pressure but effective stress does not change
- 02. The critical hydraulic gradient I of a soil mass of specific gravity G and voids ratio e is given by
 - a. $i_c = \frac{G+1}{1-e}$
 - **b.** $i_c=rac{G-1}{1+e}$
 - c. $i_c = \frac{G+1}{1+c}$
 - **d.** $i_c = \frac{G-1}{1-c}$

03. Quick sand is a

- a. Type of sand
- b. Flow condition occurring in cohesive soils
- c. Flow condition occurring in cohesionless soils
- d. Flow condition occurring in both cohesive and cohesionless soils
- 04. The hydraulic head that would produce a quick condition in a sand stratum of thickness 1.5 m, specific gravity 2.67 and voids ratio 0.67 is equal to
 - a. 1.0 m
 - b. 1.5 m
 - c. 2.0 m
 - d. 3 m
- 05. Physical properties of a permeant which influence permeability are
 - a. Viscosity only
 - b. Unit weight only
 - c. Both viscosity and unit weight
 - d. None of the above
- 06. Select the correct statements
 - a. The greater the viscosity the greater is permeability
 - b. The greater the unit weight the greater is permeability
 - c. The greater the unit weight the smaller is permeability
 - d. Unit weight does not affect permeability

- 07. Effective stress on soil
 - a. Increase voids ratio and decreases permeability
 - b. Increase both voids ratio and permeability
 - c. Decrease both voids ratio and permeability
 - d. Decrease voids ratio and increases permeability

08. If the permeability of a soil is 0.8 mm/sec, the type of soil is

- a. Gravel
- b. Sand
- c. Silt
- d. clay
- 09. Which of the following methods is more suitable for the determination permeability of clayey soil
- a. Constant head method
- b. Falling head method
- c. Horizontal permeability test
- d. None of the above
- 10. Which of the following methods is best suited for determination of permeability of coarse-grained soils
 - a. Constant head method
- b. Falling head method
- c. Both the above
- d. None of the above
- 11. Due to a rise in temperature, the viscosity and the unit weight of the percolating fluid are reduced to 60% and 90% respectively. If other things remain constant, the coefficient of permeability
 - a. Increase by 25%
 - b. Increase by 50%
 - c. Increase by 33.3% d. Decrease by 33.3%

12. Coefficient of permeability of soil

- a. Does not depend upon temperature
- b. Increase with the increase in temperature
- c. Increase with the decrease in temperature
- d. None of the above
- 13. The average coefficient of permeability of natural deposits
- a. Parallel to stratification is always greater than that perpendicular to stratification
- b. Parallel to stratification is always less than that perpendicular to stratification
- c. Is always same in both directions
- d. Parallel to stratification may or may not be greater than that perpendicular to stratification

- 14. The total discharge from two wells situated near to each other is
- a. Sum of the discharges from individual
- b. Less than the sum of the discharges from individual wells
- c. Greater than the sum of the discharges from individual wells
- d. Equal to larger of the two discharges from individual wells
- 15. The flownet for an earthen dam with 30 m water depth consists of 25 potential drops and 5 flow channels the coefficient of permeability of dam material is 0.03 mm/ sec. the discharges per metre length of dam is
- a. 0.00018 m³/sec
- b. 0.0045 m³/sec
- c. 0.18 m³/sec
- d. 0.1125 m³/sec
- 16. The most suitable method for drainage of fine grained cohesive soils is
 - a. Well point system
 - b. Vacuum method
 - c. Deep well system
 - d. Electro-osmosis method
- Total number of stress components at a point within a soil mass loaded at its boundary
 - a. 3
 - b. 6
 - c. 9
 - d. 16
- 18. Boussinesq's influence factor for vertical pressure at depth z and at the centre of a circular area for diameter 'a' carrying uniformly distributed load is

a.
$$\left[1 - \frac{1}{1 + \left(\frac{a}{z}\right)^2}\right]^{3/2}$$

b.
$$\frac{3}{2\pi} \left[\frac{1}{1 + \left(\frac{a}{z} \right)^2} \right]^{5/2}$$

c.
$$1 - \left[\frac{1}{1 + \left(\frac{a}{z} \right)^2} \right]^{3/2}$$

d.
$$1 - \left[\frac{1}{1 + \left(\frac{a}{2z} \right)^2} \right]^{3/2}$$

- 19. The intensity of vertical pressure directly below a concentrated load of $3/2\pi$ tonnes at a depth of 3/2 π meters $% \left(1\right) =\left(1\right) ^{2}$ is given by
 - a. 1t/m²
 - b. $\frac{1}{2}t/m^2$
 - c. $\frac{3}{2}t/m^2$
 - d. $\left(\frac{3}{2\pi}\right)^{3/2}t/m^2$
- 20. Vertical stress on a vertical line at a constant radial distance from the axis of a vertical load
- a. Is same at all depths
- b. Increases with depth
- c. First increase, attains a maximum value and then decrease
- d. First decrease, attains a minimum value and then increases

- 21. Phreatic line in an earthen dam is
 - a. Straight line
 - b. Parabolic
 - c. Circular
 - d. elliptical
- 22. The hydrostatic pressure on the phreatic line within a dam section
- a. Less than atmospheric pressure
- b. Equal to atmospheric pressure
- c. Greater than atmospheric pressure
- d. None of the above
- 23. Rate of consolidation
 - a. Increases with decrease in temperature
 - b. Increases with increase in temperature
 - c. Is independent of temperature
 - d. Is unaffected by permeability of soil
- 24. The unit of the coefficient of consolidation is
 - a. Cm²/gm
 - b. Cm²/sec
 - c. Gm/cm²/sec
 - d. Gm-cm/sec
- 25. terzaghi's basic differential equation for one dimensional consolidation of clayey soils is

a.
$$\frac{\partial \overline{u}}{\partial t} = C_v \frac{\partial \overline{u}}{\partial z}$$

b.
$$rac{\partial \overline{u}}{\partial z} = C_v rac{\partial^2 \overline{u}}{\partial t^2}$$

C.
$$\frac{\partial^2 \overline{u}}{\partial t^2} = C_v \frac{\partial \overline{u}}{\partial z}$$

d.
$$\frac{\partial \overline{u}}{\partial t} = C_v \frac{\partial^2 \overline{u}}{\partial_x^2}$$

- 26. The slope of isochrones at any point at a given time indicates the rate of change of
 - a. Effective stress with time
 - b. Effective stress with depth
 - c. Pore water pressure with depth
 - d. Pore water pressure with time
- 27. Within the consolidation process of a saturated clay
- a. A gradual increase in neutral pressure and a gradual decrease in effective pressure takes place and sum of the two is constant
- b. A gradual decrease in neutral pressure and a gradual increase in effective pressure takes place and sum of the two is constant
- c. Both neutral pressure and effective pressure decrease
- d. Both neutral pressure and effective pressure increase

- 28. The value of compression index for a remoulded sample whose liquid limit is 50% is
 - a. 0.028
 - b. 0.28
 - c. 0.36
 - d. 0.036
- 29. Which one of the following clays behaves like a dense sand
- a. Over-consolidated clay with a high over-consolidation ratio
- b. Over-consolidated clay with a low over-consolidation ratio
- c. Normally consolidated clay
- d. Under-consolidated clay
- 30. Coefficient of consolidation of a soil is affected by
- a. Compressibility
- b. Permeability
- c. Both compressibility and

