- 01. The net ultimate bearing capacity of a purely cohesive soil
- a. Depends on width of footing and is independent of depth of footing
- b. Depends on depth of footing and is independent of width of footing
- c. Depends on both depth and width of footing
- d. Is independent of both depth and width of footing
- 02. The rise of water table below the foundation influences the bearing capacity of soil mainly by reducing
- a. Cohesion and effective angle of shearing resistance
- b. Cohesion and effective unit weight of soil
- Effective unit weight of soil and effective angle of shearing resistance
- d. Effective angle of shearing resistance
- 03. terzaghi's general bearing capacity formula for a strip footing(C N_c + y D N_q + 0.5 y n_v B) gives
- a. Safe bearing capacity
- b. Net safe bearing capacity
- c. Ultimate bearing capacity
- d. Net ultimate bearing capacity where C = unit cohesion
 - y = unit weight of soil
 - D = depth of foundation
 - B = width of foundation
 - $N_c N_a N_r$ = bearing capacity factors
- 04. terzaghi's bearing capacity factors $N_c N_q$ and N_y are functions of
- a. Cohesion only
- b. Angle of internal friction only
- c. Both cohesion and angle of internal friction
- d. None of the above
- 05. In the plate loading test for determining the bearing capacity of soil the size of square bearing plate should be
- a. Less than 300 mm
- b. Between 300 mm and 750 mm
- c. Between 750 mm and 1 m
- d. Greater than 1 m
- 06. Select the incorrect statements.
- a. Bearing capacity of a soil depends upon the amount and direction of load.
- Bearing capacity of a soil depends on the type of soil
- Bearing capacity of a soil depends upon shape and size of footing
- Bearing capacity of a soil is independent of rate of loading.

- 07. A 600 mm square bearing plate settles by 15 mm in plate load test on a cohesionless soil under an intensity of loading of 0.2 N/mm. The settlement of a prototype shallow footing 1 m square under the same intensity of loading is
- a. 15 mm
- b. Between 15 mm and 25 mm
- c. 25 mm
- d. Greater than 25 mm
- 08. A 300 mm square bearing plate settles by 15 mm in a plate load test on a cohesive soil when the intensity of loading is 0.2 N/mm². The settlement of a prototype shallow footing 1 m square under the same intensity of loading is
- a. 15 mm
- b. 30 mm
- c. 50 mm
- d. 167 mm
- 09. Rise of water table in cohesionless soils upto ground surface reduces the net ultimate bearing capacity approximately by
- a. 25%
- b. 50%
- c. 75%
- d. 90%
- 10. Contact pressure beneath a rigid footing resting on cohesive soil is
- a. Less at edges compared to middle
- b. More at edges compared to middle
- c. Uniform throughout
- d. None of the above
- 11. According to IS specifications, the minimum depths of foundation in sand and clay should be respectively
 - a. 600 mm and 700 mm
 - b. 800 mm and 900 mm
 - c. 1 m and 800 mm
 - d. 1 m and 1.2 m

- 12. The maximum differential settlement in isolated footing on clayey soils should be limited to
- a. 25 mm
- b. 40 mm
- c. 65 mm
- d. 100 mm

13. A combined footing is generally used when

- a. Number of columns is more than two and they are spaced far apart
- b. Number of columns is two and they are spaced close to each other
- Number of columns is two and they are spaced far apart
- d. There is only one column
- 14. Negative skin friction on a pile
- a. Acts downward and increases the load carrying capacity of the pile
- b. Acts upward and increases the load carrying capacity of the pile
- c. Acts downward and reduces the load carrying capacity of the pile
- d. Acts upward and reduces the load carrying capacity of the pile
- 15. A single acting steam hammer weighing 22.5 kN and falling through a height of 1.2 m drive a pile. If the final set is 12.5 mm, then according to engineering news formula
- a. Allowable load for the pile is 300 kN
- b. Ultimate bearing capacity of the pile is 300 kN
- c. Allowable load for the pile is 120 kN $\,$
- d. Ultimate bearing capacity of the pile is 120 kN

16. Generally the bearing capacity of a pile group is

- Equal to the sum of Bering capacities of individual piles in case of friction piles
- Equal to the sum of bearing capacities of individual piles in case of end bearing piles
- c. Less than the sum of bearing capacities of individual piles in case of end bearing piles
- d. Greater than the sum of bearing capacities of individual piles in case of friction or end bearing piles.

17. The settlement of a group of friction piles as compared to that of a single pile is

- a. Same
- b. Less
- c. more
- d. None of the above

18. Select the correct statements.

- Both negative skin friction and skin frictional resistance are caused by relative settlement of soil.
- Both negative skin friction and skin frictional resistance are caused by relative settlement of pile.
- c. Negative skin friction is caused by relative settlement of soil and skin frictional resistance is caused by relative settlement of pile.
- d. Negative skin friction is caused by relative settlement of pile and skin frictional resistance is caused by relative settlement of soil.

19. Select the incorrect statement.

- a. Static formulae are suitable for friction piles driven through cohesive soils
- b. Dynamic formulae are most suitable for friction piles driven through cohesive soils
- Dynamic formulae are suitable for friction piles driven through cohesionless soils
- d. Dynamic formulae do not take into account the reduced bearing capacity of a pile in a group

20. Mechanical stabilization of soils is done with the help of

- a. Cement
- b. Lime
- c. Bitumen
- d. Proper grading

