- A steel wire of 20 mm diameter is bent into a circular shape of 10 radius. If E, the modulus of elasticity is 2 x 10⁶ kg / cm² then the maximum stress induced in the wire is
 - a. 10³ kg / cm²
 - b. 2 x 103 kg / cm2
 - c. 4 x 103 kg / cm2
 - d. $6 \times 10^3 \text{ kg} / \text{cm}^2$
- 2. Consider the following statements:
 - If a beam has two axes of symmetry even then shear centre does not coincide with the centroid.
 - For a section having one axis of symmetry, the shear centre does not coincide with the centroid but lies on the axis of symmetry
 - If a load passes through the shear centre, then the will be only in the cross section and no twisting.

Which of these statements are correct?

- a. 1, 2, and 3
- b. 1 and 3
- c. 2 and 3
- d. 1 and 3
- 3. Give that
 - M = E_s / E_t = moment of inertia of timber portion and I_s = moment of inertia of steel portion , the equivalent moment of

inertia of a flitched beam made of steel and timber is given by

- a. $L_t + I_s / m$
- b. $L_s + I_t / m$
- c. $L_s + I_t / m$
- d. L + m l
- A ratio of moment carrying capacity of a circular beam of diameter D and square beam of size 'D' is
 - A. 2
 - B. $\frac{3\pi}{9}$
 - C. $\frac{\pi}{3}$
 - D. $\frac{3\pi}{16}$
- 5. Assertion (A): I section is preferred to rectangular section for resisting bending moment

Reason (R): In – section more than 80% of bending moment is resisted by flanges only.

- 6. A simply supported beam of span 'L' carries a concentrated load 'W' at mid-span . If the width 'b' of the beam is constant and its depth is varying throughout the span, then what should be its mid-span depth, when design stress is 'f'
 - A. $\frac{\sqrt{6WI}}{bf}$
- B. $\frac{6WL}{bf}$
- C. $\frac{\sqrt{3WL}}{2hf}$
- D. $\frac{3WL}{2bf}$
- 7. In a simply supported wooden beam under uniformly distributed load, a hole has to be made in the direction of width at midspan to provide a pipeline. Form structural strength point of view, it would be advisable to have the hole made at
 - a. The bottom
 - b. The top
 - c. Mid depth
 - d. 1/4 depth either from the top or the bottom
- A cantilever of constant depth carries a uniformly distributed on the whole span. To make the maximum stress at all sections the same, the breadth of the section at a distance x from the free end should be proportional
 - a. X
 - b. √x
 - c. X²
 - d. X³
- Match List I with List II and select correct answer using the codes given below the lists:

List I	List II
A. Moment of inertia B. Elongation C. Neutral axis D. Top fibre	Tensile stress Modulus of rupture Zero shear stress Zero longitudinal stress

Codes

- a. A-2, B-1, C-3, D-4
- b. A-1, B-2, C-4, D-3
- c. A-3, B-4, C-1, D-2
- d. A-2, B-1, C-4, D-3

 A flitched beam shown in the figure subjected to a bending moment, the strain variation across the cross section will be as in

- 11. The ratio of the flexural strengths of two beams of square cross section , the first beam being placed with its top and bottom sides horizontal and the second beam being placed with one diagonal horizontal, is
 - A. $\sqrt{3}$
 - B. $\frac{1}{\sqrt{3}}$
 - C. $\frac{1}{\sqrt{2}}$
 - D. 1/2
- 12. A simply supported beam of span 'I' carries a point load W at midspan. The breadth 'b' of the beam along the entire span is constant. Given , f = permissible stress in bending , for a beam of uniform strength , the depth of the beam at any cross section at a distance 'x' from the support would be
 - a. 6 W x /fb
- **b.** $\sqrt{6Wx/fb}$
- c. 3 W x /fb
- **d.** $\sqrt{3Wx/fb}$
- 13. A rectangular timber beam is cut out of a cylindrical log of diameter 'D' the depth of the strongest timber beam will be
 - **A.** $\sqrt{\frac{1}{2}} \cdot L$
 - **B.** $\sqrt{\frac{2}{3}} \cdot D$
 - **C.** $\sqrt{\frac{5}{8}} \cdot D$
 - **D.** $\sqrt{\frac{3}{4}} \cdot D$

- 14. A high strength steel bead saw of 90 mm width and 0.5 mm thickness runs over a pulley of 500 mm diameter . Assuming E = 200 Gpa, the maximum flexural stress developed would be
 - a. 100 Mpa
 - b. 200 Mpa
 - c. 400 Mpa
 - d. 500 Mpa
- 15. The simply supported beam of constant width and varying depth and uniform strength is subjected to а central concentrated load. The depth of the beam dx from one of the supports is proportional to
 - a. X^{1/2}
 - b. X^{1/3}
 - c. X
 - d. X²
- 16. A mild steel flat of width 120 mm and thickness 10 mm is bent into an arc of a circle of radius 10 m by applying a pure moment 'M' . If E is 2 x **10**⁵ N/mm² then the magnitude of the pure moment M will be
 - a. 2 x 10⁶ N-mm
 - b. 2 x 10⁵ N-mm
 - c. 0.2 x 10⁵ N-mm
 - d. 0.2 x 10⁴ N-mm
- 17. The cross section of a beam is shown in figure I. its I_{xx} equal to 3 x 10^6 mm⁴ . It is subjected to a load as shown in figure ii. The maximum tensile stress in the beam would be

- a. Indeterminable as data is insufficient
- b. 21 MN/m²
- 21 kN / m²
- d. 21 N/m²
- 18. A timber beam of 100 mm width and 200 mm depth is reinforced with two steel plates of 100 mm width and 5 thickness s shown in figure

Which one of the following statements is correct value of bending stress in the timber?

a. Moment of resistance in figure – I will be mo

- ment of resistance in figure II will be more than that
- Moment of resistance in figure I will be more than that

